Inhomogenous electronic structure, transport gap, and percolation threshold in disordered bilayer graphene.
نویسندگان
چکیده
The inhomogenous real-space electronic structure of gapless and gapped disordered bilayer graphene is calculated in the presence of quenched charge impurities. For gapped bilayer graphene, we find that for current experimental conditions the amplitude of the fluctuations of the screened disorder potential is of the order of (or often larger than) the intrinsic gap Δ induced by the application of a perpendicular electric field. We calculate the crossover chemical potential Δ(cr), separating the insulating regime from a percolative regime in which less than half of the area of the bilayer graphene sample is insulating. We find that most of the current experiments are in the percolative regime with Δ(cr)≪Δ. The huge suppression of Δ(cr) compared with Δ provides a possible explanation for the large difference between the theoretical band gap Δ and the experimentally extracted transport gap.
منابع مشابه
Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method
We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملElectron transport, interaction and spin in graphene and graphene nanoribbons
Since the isolation of graphene in 2004, this novel material has become the major object of modern condensed matter physics. Despite of enormous research activity in this field, there are still a number of fundamental phenomena that remain unexplained and challenge researchers for further investigations. Moreover, due to its unique electronic properties, graphene is considered as a promising ca...
متن کاملCoexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene.
Charge carriers in bilayer graphene are widely believed to be massive Dirac fermions that have a bandgap tunable by a transverse electric field. However, a full transport gap, despite its importance for device applications, has not been clearly observed in gated bilayer graphene, a long-standing puzzle. Moreover, the low-energy electronic structure of bilayer graphene is widely held to be unsta...
متن کاملElectronic Properties of Bilayer Graphene Strongly Coupled to Interlayer Stacking and an External Electric Field.
Bilayer graphene (BLG) with a tunable band gap appears interesting as an alternative to graphene for practical applications; thus, its transport properties are being actively pursued. Using density functional theory and perturbation analysis, we investigated, under an external electric field, the electronic properties of BLG in various stackings relevant to recently observed complex structures....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 107 15 شماره
صفحات -
تاریخ انتشار 2011